www.dreamwarriorrecovery.com

www.dreamwarriorrecovery.com Large Scale Recovery website with all the latest news, views and opinions over 5000 separate historical articles. Meditation,Spirituality. The fellowships has helped millions to stop drinking, drugging which is a vital step for everyone on the spiritual path, but its inherent limits as a program prevent its members from becoming fully recovered.

 

Fraser Trevor Fraser Trevor Author
Title: The 100th Monkey!
Author: Fraser Trevor
Rating 5 of 5 Des:
The 100th Monkey! The Japanese monkey, Macaca Fuscata [top], lives on the island of Koshima and has been the target of biologists social s...





The 100th Monkey!

The Japanese monkey, Macaca Fuscata [top], lives on the island of Koshima and has been the target of biologists social scientists for decades. To keep them viable, they are routinely given sweet potatoes which are dropped on the beach. The monkeys enjoyed the potatoes but obviously disliked the sand that clung to them.

One day, perhaps by accident, an 18 month monkey brought a potato to a nearby stream where the water washed the sand off. Her siblings observed this and started to routinely wash their potatoes also. Scientists watched as the immediate family group, then friends of the family, began to practice this washing technique. It was a slow evolution and a majority of the other monkeys still coped with the unpleasant sand on their potatoes.

Within six years, all of the young monkeys had learned to wash the sand off their sweet potatoes. Some adults who imitated their children also learned this technique. But most adults kept eating the dirty sweet potatoes.

Then something startling took place. After a certain number of Koshima monkeys had started washing their sweet potatoes (the scientists estimate about 100) -- suddenly everyone in the tribe was washing their sweet potatoes before eating them. Scientists could not explain the almost instantaneous change in behavior. Even more remarkable, colonies of the same species on different islands -- who had neverbeen exposed to the washing technique -- suddenly began washing their potatoes! Sheldrake interpreted this behavior to the morphogenetic field, explaining that when a certain critical number of a species adapts, that adaptation will be contained and proliferated by the field. It's a kind of collective unconscious.

Scientists were quick to jump all over Sheldrake because his theory was not mechanistic. It relied on something that defied measurement or physical explanation. But Sheldrake accepted a challenge to demonstrate his theory in a now famous BBC televised experiment.

The Experiment - What do YOU see?







"The experiment has three steps. You start by showing two of these puzzle pictures to a group of test subjects to establish a base line for how easily the hidden picture in each can be recognized.
Next, on TV so that you can reach large numbers of people, you teach the TV viewers how to see one of the hidden images, but do not show the other.
Finally, you get a new group of test subjects who did not see or hear about the TV show, and again test their ability to recognize the hidden images. The experimental question is, if lots of people learn to spot the hidden image in the puzzle picture, then does that make it easier for other people to spot it as well?" -- Sheldrake
The people who saw the television show and were shown how to interpret the image in the pictures (i.e. looking at the negative, white space) are like the critical number (the "100 monkeys") who learned to wash their sweet potatoes. This knowledge then goes in to the morphogenetic field and becomes assessable to large numbers of people who did not watch the televised show and were not shown how to interpret the pictures. You compare the successful results of a groups, before and after the method of interpretation was taught, to see the effect.
Below are the two images shown to BBC viewers in the experiment. Try to guess what the picture is in each puzzle. After you click on the first picture, the hidden image will be revealed. Using that knowledge, can you "see" the image in the second picture? Click after you have made a guess. How did you do?




Figure 1 [above]

Figure 2 [above]
The first of these TV experiments was done in Britain in 1983 with 2 million viewers. Several thousand people were then tested in different parts of the world and the result was very positive and significant.




"This was then done on a larger scale on BBC television in 1984 with 8 million viewers. It was on one of the popular science programs calledTomorrow's World. Now in that one, the image to be shown was selected at random, live, at the moment of broadcast.
Post-broadcast tests were then carried out in North America, in Western Europe, and in the Southern Hemisphere, particularly South Africa ... The percentage of people recognizing the hidden image in the picture that was shown on television increased very significantly in Western Europe, but not in North America, and in neither case was there a change in the control picture.
So there seems to have been an effect, but the effect was confined to Western Europe.
Now at first this looks as if it might be a distance effect but I don't expect distance effects ... one possibility is that this has to do with people being in similar time zones, being more in phase. South Africa and Western Europe are only one hour different from Britain, whereas America is 5 to 8 hours different." -- Sheldrake



The Plastic Brain

When we speak of the brain being "plastic" we are speaking about its ability to reorganize the neurons to perform different functions, as needed. If one part of the brain is injured, it is possible for other parts of the brain to be mobilized to compensate for the lost tissue. As we age, it is possible for individual neurons to regenerate and be revitalized. More evidence is suggesting that electrical fields play an important role in this "plasticity".

Neurons are continually born from endogenous stem cells and added to the brain throughout our lives. But as we get older, the development of new neurons declines dramatically. A study reported in the Annals of Neurology in 2002 described how aged mice with minimal new neuron development were revitalized and their neurons made to regenerate up to five times that of the control group merely by subjecting them to robust mental stimuli.

"Could this plastic response be relevant for explaining the beneficial effects of leading 'an active life' on brain function and pathology? Adult hippocampal neurogenesis in mice living in an enriched environment from the age of 10 to 20 months was fivefold higher than in controls.
This cellular plasticity occurred in the context of significant improvements of learning parameters, exploratory behavior, and locomotor activity. Enriched living mice also had a reduced lipofuscin load in the dentate gyrus, indicating decreased nonspecific age-dependent degeneration. Therefore, in mice signs of neuronal aging can be diminished by a sustained active and challenging life, even if this stimulation started only at medium age. Activity exerts not only an acute but also a sustained effect on brain plasticity." -- [2]

It seems probable that by activating existing paths and stimulating electric field activity, neurogenesis -- the revitalization of neurons -- can be achieved. There seems to be some kind of mechanism that switches on the genes, making them behave as if they were younger. The good news is that this revitalization does not need to be intellectual. Brain stimulation from ordinary physical exercise appears to have the same effect.

In UCLA's Division of Neurosurgery, researchers found that rodents who were exercised regularly had greater neurogenesis and neuroplasticity compared to a control group that was not able to exercise. [3] So it seems that multi-path stimulation is key to maintaining a healthy brain. And this plasticity again appears related to the electric fields that are generated when a collection of neural pathways are stimulated simultaneously.

Can we mould our own brain?

Yes. The extent to which we can reconfigure our own brain is truly amazing. In the following video, 9 year old Jodi Miller can be seen attending school, playing with her friends and living a normal life. Her intellect and emotions remain intact despite the fact that surgeons removed one half of her brain.

Jodi suffered from brain siezures that could not be controlled by medication. To save her life, an entire hemisphere had to be disected. The empty half of her cranium has since been replaced by cerebral fluid. The remaining half of her brain reconfigured and reassigned the tasks of her missing hemisphere almost completely.








Related articles
Enhanced by Zemanta
Reactions:

Dream Warrior Solutions

Post a Comment

 
Top